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Abstract: 

The search for evidence of the boundary between 

classical and quantum mechanics is a quest of 

fundamental and enduring importance. Using 
semiclassical arguments, we demonstrate that the 

boundary between the classical and quantum 

domains can be defined in terms of the specific 

characteristics of a delimiter parameter related to 

the notions of I noise ii) Hisami distribution 

functions, iii) Where’s entropy, and iv) escort 

distributions. 

Introduction 

The search for evidence of the boundary between 
classical and quantum mechanics is a quest of 

fundamental and enduring importance. Like phase-

space points, coherent states may be thought of as 

discrete entities. The topic of how far the features 

of an arbitrary quantum state defined by the density 

operator deviate from those of coherent states is a 

natural one to consider. In this regard, Kenfack and 

Sikorski [2] investigate the negative of the Wigner 

function and question whether there is any 

parameter that may legitimately express the degree 

of non-classicality of. With this note, we want to 
provide a new perspective within the field of 

semiclassical statistics [3], specifically with respect 

to the methods and data from quantum optics. You 

may reach us at plastino@fisica.unlp.edu.ar. 

medical procedures involving the ear. Our thoughts 

revolve on "noise," which has been shown to be a 

very revealing factor in particle-wave duality [4]. 

Variations in electromagnetic fields are distinct 

depending on whether the energy is transmitted as 

waves or particles. Classical waves' energy 

fluctuations grow proportionally to their mean 

energy, but classical particles' energy fluctuations 
grow at a rate equal to the square root of their mean 

energy. To accommodate the fact that a photon is 

neither a classical wave nor a classical particle, 

both linear and square-foot contributions are 

required. At optical frequencies, the square-root 

(particle) contribution is more significant than the 

linear (wave) contribution [5-7]. In the 1960s, it 

was shown that fluctuations may tell the difference 

between the radiation from a laser and that from a 

black body, hence expanding the diagnostic 

potential of photon-noise. The wave contribution to 
the fluctuations is zero for the former and 

negligible for the latter (a dark body). Quantum 

optics has advanced to the point that noise 

measurements are routine, and Glauber's quantum 

theory of photon statistics is required reading. For 

this reason, coherent states [5, 6] take on a pivotal 

role in quantum optics [1, 8, 9], since they are the 

states of a harmonic oscillator system that most 

closely resemble the classical motion of a particle 

in a quadratic potential. In fact, the techniques of 

quantum optics derive much of their power from 

their ability to exploit classical analogues and, in 
particular, comparisons with classical noise theory, 

which allow reduction of purely harmonic systems 

to non-operator ones, via phase space methods [1, 

8], in which the essentially quantal nature of the 

problem is transcribed in terms of the interpretation 

of apparently classical variables, with coherent 

states [9] playing the lead role. Again, that function 

will be called upon within the bounds of 

semiclassical methods to address the question given 

in the opening paragraph. In this talk, I'll 

demonstrate how the peculiarities of a semiclassical 

delimiter parameter linked to the ideas of 

Preliminaries 

Wheel entropy and Hisami 

distributions 

As an example of a semiclassical idea, we look to 

Wheels' entropy W, which provides a practical 
metric for gauging the degree to which phases are 

locally coherent [1, 10, 11]. The relevant definition 

is as follows: 
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where (pop) = z||z is the density matrix of the 

system, and (pop) is a "semi-classical" phase-space 

distribution function [1, 9]. By satisfying the 
equation adze = zizz, coherent states are eigenstates 

of the annihilation operator a. Distribution (pop) is 

scaled in the way 

 

 

the Hisami distribution [12] is a common name for 

this kind of distribution. Wheel entropy is the same 

as the "classical entropy" (1) of a Wigner 

distribution, as shown by the final two equations. 

Actually, (pop) is a Wigner-distribution DW spread 

out across a bounded area of phase space of size. 

This was shown in [10]. Smearing makes (pop) a 

positive function even though DW does not have a 

positive character. Hisami’s semi-classical 
probability distribution is a subset of the 

probability space [10] for the simultaneous but 

approximate localization of position and 

momentum in phase space. Because of this 

inequality, we can see that the uncertainty principle 

is at work. 

 

in which Wheel made a guess [11] and Lieb proved 

it [13]. The Gibbs canonical distribution and its 

related "thermal" density matrix are used for the 

typical presentation of equilibrium in statistical 

mechanics, and are given by. 

 

 

using the partition function Z = Tr(Eh), the inverse 

temperature T = = 1/Kbit, and kB as the Boltzmann 

constant. Take any Hamiltonian H with eigen-

energies End and eigenstates |n, and you can easily 

put out a formula for W. (n stands for a collection 

of all the pertinent quantum numbers required to 

label the states). Writing is always an option. 

 

By combining Eq. (5) with Eq. (6), we have a 

practical method for arriving to W. (1). Coherent 

states have the form [1] in the case of the harmonic 

oscillator. 

 

where End = (n + 1/2), where n = 0; 1; where |n are 

an orthonormal collection of eigenstates. In this 

case, the helpful analytic expressions found in Ref. 

[10] may be used. 

 

The entropy, at its lowest point at T 0, expresses 

just quantum fluctuations with the value W = 1. In 

contrast, when T is below the critical temperature, 

the entropy approaches the value\ 

An indicator of noise: the Mandel parameter 

The so-called Mandel parameter, introduced by [7], 

is a handy noise-indicator of a non-classical field. 

 

This is connected to the normalised variance of the 

photon distribution, F = (N2)2/(N2)N, commonly 

known as the quantum Fano factor F [14]. As the 
photo-count noise of the produced light is less for F 

1 (Q 0) than it is for coherent (ideal laser) light of 

the same intensity (F = 1; Q = 0), the light is 

referred to as sub-Poisoning, while for F > 1 (Q > 

0) it is referred to as super-Poisoning. It's obvious 

that reducing the Fano effect is a goal. The Mandel 

parameter disappears (Q = 0 and F = 1) in a 

coherent state, also known as a pure quantum state. 

When the Heisenberg uncertainty relation is 

maximised and the uncertainty is the same in all 

four quadrature components, a coherent field is the 

quantum-state most similar to a classical field. Here 
we ask: how near can we go to Q = 0 (or F = 1) 

using semiclassical methods? Finding where 

classical and quantum fields meet with this solution 

should be rather straightforward. If that's the case, 

then it's evident that both Q and F serve as non-

classicality markers. Indeed, in a thermal state, Q > 

0 and F > 1, indicating a more dispersed photon 

distribution than the Poisoning model predicts. At 

the limit of Q = 0, (F = 1), the photon distribution 

becomes smaller than a Poisson-PDF, and the 

corresponding state is not classical. Number states 
are the simplest kind of non-classical states. This is 

because they are eigenstates of the photon number 
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operator N, therefore fluctuations in N disappear 

and Q = 1 (F = 0) appears in the Mandel parameter 

[15]. Here, we'll make a semiclassical connection 

between these thoughts. 

Present considerations: 

semiclassical Q−evaluation 

The HO-Mandel parameter may be rewritten as 

follows, taking into consideration the connection 

between the number operator and the Hamiltonian 

of the harmonic oscillator H through N = H/1/2. 

 

where we have relied on the formula H = |z|2 [3]. 

From here on out, Sc, a semiclassical variant of 

Mandel's paramo 

 

where ⟨:::⟩ The subindex indicates that the Hisami 

distribution (7) has been used as the weight 

function, and the symbol stands for the 

semiclassical mean value of any generic 
observable. It is therefore straightforward to 

observe that Screads. 

 

Note that the semiclassical technique prevents us 

from obtaining the Q = 0 value (for an explanation, 

see the note below Eq. Now we turn to expound on 

some other resources that, it is hoped, will throw 

even more light on this critical (as will be shown) 

topic. 

Escort-Fano factor: 

There is an infinite family of related probability 

distributions (PDs) ft(x) provided by for each PD 

f(x). 

 

These have been shown to be very helpful in the 

study of nonlinear dynamical systems because they 

are typically better at revealing aspects of the 

system than the original distribution [16]. Using the 

idea of escort distribution (ED) with semiclassical 

Hisami distributions may help ameliorate the 

situation stated above. As a result, it is possible to 

use quantitative Hisami distributions (Quds) q(pop) 

to glean "better" semiclassical information. 

 

 

using the formula d2z/ = dad/2 whose HO-analytic 

form is available from Ref. [17], i.e., 

 

For the appropriate Hamiltonian-moments, we now 

calculate the expectation values in Eq. (10), using q 

as the weight function. 

 

 

 

 

 

 

Figure 1. Mandel parameter Sc evaluated semi classically by 

recourse to escort distributions of order q at different 

temperatures T (given in ω−units). 
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that the Mandel parameter (Fano factor) may be 

expressed as a "escort"-type expression: 

 

The value of Sc is less than one as q approaches 

unity. Fig. 1 illustrates how the acquisition of q 

provides the extra degree of freedom necessary to 

achieve the required negative values of the Mandel 

parameter. More factors are required for 

interpreting these findings. Let's start with the 

sportwear entropy constructed from the 

distributions q, which looks like this: (found in 

[18]) 

 

as a result, values cannot be negative. In order to 
ensure that the information measure We satisfies 

Lieb's constraint and is positive (i.e., 1 We 0), as 

implied by Eq. (20) and the HO-analytic formula 

(8), we must limit the escort-degree orange to 1 q e 

2:7182818. Even yet, the aforementioned space 

may be further constrained by taking into account 

other, more subtle factors. We now use the idea of 

the participation ratio R of a density operator 

(which provides the number of pure states that 

enter [19, 20]) to get this conclusion: 

 

Our next step is to devise a semiclassical 

"equivalent-notion" by completing a similar 
computation using the escortHisami distribution q 

of the harmonic oscillator. The resulting harmonic 

oscillator distribution would be escortHisami q. As 

a result of this, 

 

For example, consider the expression RHO 2 q (1 

e): (22) q=1(T = 0) = 2. Even in the "best case" 

situation, our density operator (4) has at least two 
pure states, which prevents us from semi classically 

obtaining Q =0 in El (12). Thus, at absolute zero, q 

= 2 is a direct consequence of invoking R 1: When 

temperature increases, the region of allowable 

purview moves "to the right," and eventually passes 

the value of 2. For T = 0, a more restricted area F 

of allowable values for q follows, namely, F = [1 q 

2], which is relevant to our current topic as a look 

at Fig. 1 will demonstrate. The rightward expansion 

of F is a direct result of the growth of T, as 

previously mentioned. In Fig. 1, we see that the 
idea of escort distributions of order 2 q e allows us 

to reach the world of negative (and consequently 

quantum) values of the Mandel parameter Q in a 

semiclassical fashion. Yet, the quantum-classical 

boundary starts at Sc = 1, making the physical 

(quantum) region 1 Q 1 inaccessible to our 

modified semiclassical method. Negative 

fluctuations, as implied by the Sc 1 values in Fig. 1 

[Cf. Eq. (9)], are not physically plausible and so 

cannot be taken seriously. Keep in mind that Sc = 1 

is obtained for q = (for all temperatures T), but this 
is also not physically plausible since the 

corresponding escort-Hisami distribution would be 

a delta in phase space, which goes against the 

uncertainty principle. For the sake of ensuring that 

our findings are not only a Hisami artefact, but we 

will also now attempt to solve the identical problem 

using a different strategy. 

Escort thermal Wigner distribution 

It is well-known that for any generic density 

matrix, the Wigner distribution may be written as 

[22]. 

 

which is scaled such that R(d2z/) few(pop) = 1. 

Thus, the appropriate analytic equation for the 

thermal density of a harmonic oscillator is [22]. 

 

using the formula |z| = x242 x + p242 p, where x = 

/2m and p = /2m. It is at this time that we provide a 

formal definition of the escort-thermal Wigner 
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Figure 2. Mandel parameter Sc W evaluated semi classically 

by recourse to escort distributions of order q at different 

temperatures T (given in ω−units). 

distribution as follows: 

 

Thus, if we do an integration across phase space, 

we will 

 

After this evaluation, the Mandel parameter looks 

like 

 

QSC W against q is shown in Fig. 2. Figure 2 

shows that the behaviour of Figure 1 is recovered, 

although with a modified q-dependence. 

Conclusions 

Where is the value in our oversimplification of 

the escort industry? So, to be able to determine 

that, when the escort degree q adopts certain 
values, pretty unusual things happen that 

plainly exhibit no classicality (our goal in this 

communication). Since Sc = 1 marks the 

boundary between the classical and quantum 
worlds, such eccentricity appears to indicate 

that we have crossed over into the latter. First, 

observe what occurs at q = 2; T = 0, the initial 
condition under which negativity is tenable. It 

is important to realise that the resulting 

semiclassical escort-Hisami distribution for e q 
2 cannot be associated à la (22) to a quantal 

distribution function derived from a density 

operator because in that case the participation 

ratio would be less than unity, a limit value 
only reached by pure states. Nonetheless, this 

does highlight a contradiction between the 

quantum regime and escort distributions of 
degree > 2, which has of little importance for 

the semiclassical method because it is not a 

quantum one. When q = 2, Sc suddenly leaps 

from positive to negative infinity (recall that T 
= 0), thus the transition is anything from 

smooth. By substituting q = 2/[1 exp()] for q = 

2, these arguments remain true even at limited 

temperatures. Second, the escort distributions 

transform into a Dirac's delta in phase space 

[21], where we get the quantal Qis = 1. The 
same qualitative pattern is shown when the 

thermal-Wigner distribution is used in lieu of 

the escort-Hisami distribution, despite the fact 
that the related q-values deviate somewhat 

from the Hussaini ones. Consequently, we run 

into the aforementioned peculiar behaviours if 

we want for our semi classically assessed 
noise estimator Q to accept values associated 

with the quantal domain. In this regard, a 

hypothesis may be formulated. Abnormalities 
in the behaviour of semiclassical quantities 

might point to non-classicality. Although we 

conclude that it is impossible to reach the 
quantum regime through a semiclassical 

approach, we do conclude that our method 

"senses" the presence of such a regime. In 

addition, non-classicality can be "visualised" 
in classical terms, despite the apparent 

contradiction: non-classicality necessitates 

zero-fluctuations in the particle-number 
alongside finite ones in phase-space location, 

which is impossible in classical physics 

(owing to the Dirac's delta at q = ). Therefore, 
we conclude that the degree q of the escort 

distribution of a Hisami distribution is a 

semiclassical signal of non-classicality, which 

we have discovered in our study. With q equal 
to 2, we move out of the classical area. In this 

case (with q between 0 and 2), the 

participation ratio is less than 1, hence it is 
impossible to correlate a quantum probability 

distribution (such the ||2sort) with the 

semiclassical PDs that describe the situation. 

For q =, we seem to obtain the truly quantum 
case of zero particle-number fluctuations, at 

the expense of breaking the uncertainty 

principle. So, it has been concluded that the 
escort-semiclassical method displays certain 

characteristics that facilitate "visualising" the 

classical-quantum boundary. 
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